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Abstract

The minimum weight design of helicopter h(z) box beam height variation along
rotor blades with constraints on multiple blade span
coupled flap-lag natural frequencies has been n number of blades
studied in this paper. A constraint has also T, distance from the root to the center
been imposed on the minimum value of the J th
autorotational inertia of the blade to ensure of the j segment
sufficient rotary inertia to autorotate in ti,Eprty box beam wall thicknesses
case of an engine failure. A stress X, vy, 2 reference axes
constraint has been used to guard against 2 box beam cross sectional area
structural failure due to blade centrifugal Al autorotational inertia
forces. Design variables include blade taper E Young’s modulus
ratio, dimensions of the box beam located F objective function
inside the airfoil and magnitudes of the FS factor of safety
nonstruc;ugal weights. The Erogrim CAMRAD h;s GJ torsional stiffness
been use or the blade modal analysis and the ; ;
program CONMIN has been used for the 1x’ 1y  total principal area moments  of
optimization. In addition, a linear inertia about reference axes
approximation involving Taylor series L. length of jth segment
expansion has been used to reduce the analysis J
effort. The procedure contains a sensitivity M. total mass of jth segment
analysis which consists of  analytical J
derivatives of the objective function, the N total number of blade segments
autorotational inertia constraint and the  NDV number of design variables
stress constraints. A central finite R blade radius
difference scheme has been used for the ¥ total blade weight ) N
derivatives of the frequency constraints. W) blade weight as a function of design
Optimum designs have been obtained for both variable ¢
rectangular and tapered blades. Using the Wy box beam weight
method developed in this paper, it is possible gy nonstructural blade weight (weight
to design a rotor blade with reduced weight, o £ ski h mb 1 with
when compared to a baseline blade, while gunin;7iumgggy:gigét§§c' along wit
satisfying all the imposed design f > .
requirements. The paper also discusses the Z gre;crlbed.agiorgtatlonal inertia
effect of adding constraints on higher XO €sign varlable increment
frequencies and stresses on the optimum blade h taper ratio in z direction
weight and the distributions of mass and .th . ;
stigfness in the optimum designs. o3 + design variable

pj mass density of the jth segment
Nomenclature ¥ stress in 3D segment
Onax maximum allowable stress
b box beam width Q blade RPM
c chord
fl,f3,f4 first three lead-~lag dominated Subscripts and Superscripts
frequencies (elastic modes)
£, f first two flapping dominated T root value
2'%5 ] t tip value
frequencies (elastic modes) L lower bound

g constraint function U upper bound
h box beam height - approximate value



Introduction

Computer-based mathematical programming
methods for optimum design of structures have
been under rapid development during the last
two decades. Using mathematical processes,
engineering design synthesis problems can be
posed as sequences of analysis problems
combining engineering models with minimization

techniques. An extensive amount of work has
been done in developing such design
optimization procedures over the past few

years to bring the state of the art to a high

levell™®. These methods can now be applied to
optimum design of practical structures such as

aircraftl’z’5 and helicopters3-5. The present
paper focuses on helicopter rotor blade
design.

The helicopter rotor blade design process
requires a merging of several disciplines,
including dynamics, aerodynamics, structures,
and acoustics. Two of the major «criteria in

rotor blade design have been low weight and
low vibration. For a helicopter in forward
flight, the nonuniform flow passing through

the rotor causes oscillating airloads on the
rotor blades. These lcads in cturn are
translated into vibratory shear <£forces and
bending moments at the hub. One important
design technique is to separate the natural
frequencies of the blade from the harmonics of
the airlocads to avoid resonance. Failure to
consider frequency placement in the predesign
stage of the design process could cause a
significant increase in the final blade weight
since it generally involves postdesign
addition of nonstructural masses. To avoid
such weight penalties it is desirable in the
design and fabrication of the blade to
appropriately place the natural frequencies at
an early stage in the design process. This
can be done by a proper tailoring of the blade
mass and/or stiffness distribution. This
tailoring is not an easy task because of the
complicated vibration modes of the blade due

to the presence of several coupling effectss.

One such coupling 1is between flap, lag, and
torsional motions through the pitch angle
blade twist and offset between the elastic and
inertia axes. The inclusion of these coupling
effects makes the design process highly
complex. In the past, the conventional design
process was controlled mainly by the
designer’s experience and the use of trial and
error methods.

Today, one of the more promising
approaches to the helicopter rotor design
process is the application of optimization

techniques. A considerable amount of work has
been aimed at optimum designs of vibrating
structures. For example, minimum weight
designs with constraints on natural
frequencies have been addressed in Refs. 7-9

and the dual problem of maximizing the
frequencies with a constraint on the total
weight has been addressed in Ref. 10.

Frequencies of coupled bending-torsion modes
caused by an offset between the elastic and
inertia axes have been addressed in Refs., 9

and 10. Recently there have been a number of
applications of optimization techniques to
rotor blade designs’s'll_lg. Some of this

work has been devoted to reducing vibration by
controlling the vertical hub shears and

moments:2™17 . In Ref. 13 Taylor described the

use of modal shaping. The objective of his
work is to reduce vibration levels by
modifying ‘modal shaping parameters’ which are
functions of blade mass distributions and mode

shapes. These modal shaping parameters have
been sometimes interpreted as 'ad hoc’
optimality criterials’l7. In Ref. 14 Bennett

described a method for reducing the vertical
shear transferred from the rotor blade to the
mast by combining conventional helicopter
engineering analysis with a nonlinear

Friedmann15 considered
the problem of minimizing hub shears or hub
vibratory rolling moments subject to
aercelastic and frequency constraints. An
early attempt at optimum Dblade design for
proper placement of natural frequencies with a
constraint on autorotational inertia was due

to Petersl6 where he started with a baseline
blade design and attempted to refine the
design by trying to find a mass and stiffness
distribution to give the desired frequencies.
Reference 17 addressed the optimum design rfor
a typical soft in-plane hingeless rotor
configuration for minimum weight using

programming algorithm.

optimality criteria approach. The results :in
Ref. 17 indicate that application sZ
optimization techniques leads to berefits in
rotor plade design not only wnrough
substantial weight reduction butr also 2

considerable reduction in the wvibratory hub

shears and moments at the blade root. In Ref.
18, Peters addressed a problem of the optimum
design of a rectangular blade for proper

placement of frequencies. However, he did not
use the blade weight as the objective function
due to a difficulty in finding a feasible
initial design. Rather, he started his design
with an objective function involving measures
of the closeness of frequencies to desirable
frequencies.

Currently at the NASA Langley Research

Center, there 1is an effort to integrate
several technical disciplines in rotorcraft
design. The present work 1is part of this
effort and deals with the dynamics aspect of
design. The problem addressed in this paper
is an extension of the problem addressed by

the authors in Ref. 19 where constraints were
imposed on the first lead-lag dominated mode
and the first flapping dominated mode along

with a rotary 1inertia constraint to assure
that the blade could autorotate. The
structural safety of the design was included

as a first approximation by imposing lower
bounds on the structural design variables.
However, the danger of the higher frequencies
falling in the «critical ranges and causing
resonance remained. The current work involves
minimum weight designs of helicopter rotor

blades subject to the following constraints:
a) upper and lower bounds ('windows’) on
multiple adjacent natural £frequencies, b)
minimum prescribed value on the blade

autorotational inertia, and ¢) upper limit on

the blade centrifugal stress. In Ref. 18
Peters addressed the necessity of using a
stress constraint in frequency placement

optimization but did not include it in the
optimization formulation. The expression for
the stress presented here differs from that of

Ref. 18 and is a more conservative estimate.
An existing adequate blade which will be
referred to as the ’‘reference blade’ has been
selected. In rotor blade design it is
essential for natural frequencies to be
separated from values which are certain
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integer multiples of the rotor speed to avoid
resonance. These critical values are referred
to as ’'n per rev’ where n denotes the total
number of blades. A modal analysis of cthe
reference blade showed that the frequencies of
interest were away from the n per rev values.
Hence, it was decided to define the frequency
constraints to force the frequencies to be
close to those of the reference blade. This
is done by optimally tailoring the blade
stiffness and mass distributions by the
procedure developed in this paper. The
purpose of this paper is to describe the
formulation and implementation of the
optimization procedure, present results from
the procedure and assess the effects of
additional frequency and stress constraints on
the optimum designs.

Optimization Problem Formulation

The purpose of the optimization procedure
is to reduce the weight of a blade while
constraining the natural fregquencies to be
within the ’windows’ of the reference blade
frequencies. The concept of ‘’windows’ has

been used since the nonlinear programming
method used in this work cannot handle
equality constraints. These windows are on
the frequencies of the first three lead-lag
dominated modes and the first two flapping
dominated modes (elastic modes only). A
prescribed lower limit on the blade

autorotational inertia and an upper bound on
the blade centrifugal stress have also been
used. Side constraints have been imposed on
the design variables to avoid impractical
solutions. The design variables include box
beam dimensions, taper ratio and magnitudes of
the nonstructural weights located inside the

box beam. The optimization process begins
with an arbitrary set of design wvariable
values.

The blade weight, W, has two components
as follows:

W= Wy - W (1)
where wb denotes the box beam weight and Wo
represents the nonstructural weight of the
blade which includes the weight of the skin,

honeycomb, etc., along with the weight of the
tuning/lumped masses added to the blade. The
blade is discretized into finite segments and
the blade weight in discretized form is given
below:

N N
W Y egRyLy D "o (2)
j-l ]-l

where N denotes the total number of segments
and pj, Aj, Lj and Wo_ denote the density, the

sectional length and the

jth segment,

cross area, the

nonstructural weight of the

respectively.
The autorotational inertia (AI) of the
blade is calculated as follows

e LSQRICuﬁLAL;I%X
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N
Al = Z erg (3
j=1

where Wj is the total weight and r. is the
distance from the root to the center of the

jth segment. The
stress is

expression for the blade

N
g, = Z Mjﬂzrj/Ai (1)
j=i

where ¢, is the stress due to centrifugal

i
forces and Ai is the cross sectional area of

th

the i is the total mass of the

J
jth segment and € is the blade RPM. The
frequencies associated with the first five
elastic modes of coupled vibration are denoted
by fl, f2, f3, f4 and f5, (includes three

lead-lag and two flapping).

segment, M

The optimization problem can now be
mathematically posed as follows:

minimize W(¢)

where the weight W is given by equation (2)
and ¢ denotes the vector of design variables,
subject to the normalized constraints

gk(¢) - (fk/ka) -150 k=1,2,..,5 (3)

qk+5(¢) =-1- (fk/ka) s 0 k=1,2,..,5 (6)

gy1(® =1 - (AI/oy S 0 )
914k (®) = 1 - O /(O)eFS) S 0 k=1,2,..,N (8)

and side constraints
oiLs °i < QiU (%)

In equations (5) and (6), fk and fk , denote
4] L

the upper and lower bound on the kth frequency
fk' In equation (7) a represents the minimum

value. In

prescribed autorotational inertia
th
k

equation (8) o, 1is the stress 1in the

segment given by equation (4), Omax is the
stress in the blade and FS

equation (%) 0,

maximum allowable
is a factor of safety. In

.th

denctes the design wvariable and ¢, and

Qi represent the associated upper and lower
L

bounds, respectively. By convention a
constraint g(¢) is satisfied when g(9)<0.

Analysis

The modal analysis portion of the program

CAMRAD20 which uses a modified Galerkin



approachz1 has been used. According to Ref.
22, this approach is the preferred method for
computing mode shapes and frequencies of
structures having large radial variations in
bending stiffness. Analytical expressions
have been obtained for the derivatives of the
objective function, the autorotational inertia
constraint and the stress constraints. A
central difference scheme has been used for
the derivative of the frequency constraints
(initial attempts using a forward difference
scheme gave highly inaccurate derivatives).

Optimization Implementation

The basic algorithm used is a combination
of the general-purpose optimization program

CONMIN23 and piecewise linear approximations
for computing the objective function and
constraints. Since the optimization process
requires many evaluations of the objective
function and constraints before an optimum
design is obtained, the process can be very
expensive 1f full analyses are made for each

function evaluation. However, as Miura3
pointed out, the optimization process
primarily uses analysis results to move in the
direction of the optimum design:; therefore, a
full analysis needs to be made only
occasionally during the design process and
always at the end to check the <final design.
Thus, various approximation techniques can be
used during the optimization to reduce costs.
In the present work, the objective function
and constraints are approximated  using a
piecewise linear analysis that consists of
linear Taylor series expansions for the
objective function and the constraints based
on the design variable values from CONMIN and
the sensitivity information from the full
analysis. Specifically, 1if the objective
function F, the <constraint g, and their
respective derivatives are calculated for the
design variable Ok using an exact analysis,

their values for an increment in the design
variable AQk are as follows:

NDV
Ferf+ 9, (3F/30,)40, (10)
k=1
and
" v
g=gqg+ EE; (dg/39,) 40, (11)

where the quantities denoted (") represent
approximate values and NDV denotes the number
of design variables. The assumption of
linearity is valid over small increments in
the design variable wvalues and dces not
introduce large errors if the incremants are
small., Since the objective function and the
constraints are all linearized, the
optimization problem reduces to essentially a
sequential linear programming problem.

A flow chart describing the optimization

procedure is shown in Fig. 1. The iteration
scheme is stopped when the objective function
converges. For the convergence of the

objective function, a change within a

convergence tolerance of 0.5 X 10-5 over three
consecutive cycles has been allowed.

Test Problem

The reference blade (Refs. 18-19) shown
in Fig. 2 is articulated and has a rigid hub.
The blade has a rectangular planform, a
pretwist and a root spring which allows

torsional motion. The box beam with unequal
vertical wall thicknesses 1is located inside
the airfoil. As in Ref. 19, it is assumed

that the box beam contributes to the bplade
stiffness and the contributions of -“he skin,
honeycomb, etc. to the blade stiffness are
neglected. The details for calculating the
box beam section properties can be found 1in
the Appendix of Ref. 19. The properties of
the box beam located inside the airfoil Tig.
2) are as follows:

h=0.117 £t
b=0.463 ft

p=8.645 slugs/fc>

£=2.304 x 107 1b/£e?

An allowable stress Omax=l.93x107lb/f:2 and a
factor of safety FS=3 have been used in the
analysis. The blade has been discretized into
ten segments and details of the blade segment
data are presented in Table 1. The entry
‘min. nonstructural segment weight’ in Table 1
represents the weight of the skin, honeycomb,
etc. of a segment and ‘total nonstructural
segment weight’ represents the weight of the
skin, honeycomb, etc. along with the
lumped/tuning weight of that segment. The
rotor preassigned parameters (the parameters
that remain fixed during the optimization
process) are presented in Table 2.

The frequencies of interest of the
reference blade are presented in Table 3. The
first three lead-lag dominated and the first
two flapping dominated modes are away from the
critical frequencies (e.g., 3, 4, 5 and 8 per
rev) and need not be improved further.
Therefore, the frequency windows for the
optimum blade are set to be within *+1 percent
of these values (Table 3).

Blades with both rectangular and tapered
planforms have been considered. In case of
the rectangular blade, the box beam is uniform
along the blade span. For the tapered blade
it is assumed, as in Ref. 19, that the box
beam is tapered (Fig. 3a) and the additional
design variables are the box keam height at
the root, h,_, and the taper ratio, kh’ which

is defired as the ratio of the box beam neight
at the root ©o the corresponding value at the
tip (Fig. 3a). As in Ref. 13, a linear
variation of the box beam height, h, in the
spanwise direction (z direction) has been
assumed (Fig. 3b).

Results and Discussion

This section of the paper presents
results obtained by applying the optimization

procedure, .described previously, to the
cptimum design of both rectangular and tapered
rotor blades. First, optimum designs are

described and compared with the reference
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blade (Refs. 18 and 19). Second, QEJ]-EQQBBQUALITYIC!Q! to satisfy the rotary inertia

study assessing the effects of including

constraints on higher frequencies are
described. Finally, the effects of stress
constraints have been investigated by
comparing the results obtained with stress
constraints to those without stress
constraints. A summary of the cases studied

is given in Table 4. Results of these studies
are presented in Tables 5 and 6 for the
rectangular blade (30 and 40 design variables)
and in Table 7 for the tapered blade (42
design variables). In each table, column 1
represents the reference blade data:; column 2
gives the corresponding information for the
optimum design with constraints on the five
frequencies, autorotational inertia and
stress (case a, Table 4); column 3 gives
results for the optimum design with
constraints on the five frequencies and
autorotational inertia only (no stress
constraints, case b, Table 4) and column 4
presents the results (Ref. 19) for the optimum
design with constraints on the first two
frequencies (elastic modes only) and
autorotational inertia (case c, Table 4). 1In
all cases convergence typically has been
achieved in 8-10 cycles.

The tables indicate that with the
constraints on the five frequencies, the
autorotational inertia and the blade stresses,
the optimum rectangular blade is 2.67 to 4.74
percent lighter than the reference blade and
the optimum tapered blade is 6.21 percent
lighter than the reference blade. The first
lead-lag frequency (fl) is at its prescribed

upper bound after optimization and the
autorotational inertia constraint is active
(i.e. exactly satisfied) in all cases. The
associated design variable distributions are
presented in Figs. 4-6. Fig. 4a presents the
optimum versus the reference blade box beam
horizontal wall thickness (t;) distributions

along the blade span for the rectangular blade
and Fig. 4b presents the same for the tapered
blade. In both cases, the optimum blade has a
larger value of ty than the reference blade at

the blade tip and in case of the tapered blade
the value of t, at the blade root is much

smaller than the value for the reference
blade. Figs. 5a and 5b present the optimum
versus the reference blade box beam vertical
wall thickness (tz) distributions along the

blade span for the rectangular and the tapered
blade, respectively. The optimization process
does not produce significant changes in the t,

distribution for the rectangular blade (Fig.
Sa). The changes are more significant for the
tapered blade (Fig. 5b) where there are larger
values of £, towards the blade tip. The

larger design variable values towards the
blade tip are caused by the presence of the
autorotational inertia constraint which
encourages the addition of mass at locations
outboard. Figs. 6a and 6b depict the optimum
versus the reference blade nonstructural
segment weight distributions along the blade
radius. For the rectangular blade (Fig. 6a)
the optimum blade has lower nonstructural
weight throughout the blade span. However,
for the tapered blade (Fig. 6b) the optimum
blade has larger nonstructural weight towards
the blade tip than the reference blade. This
is because the blade is tapered  and has
reduced structural weight at the blade tip and

constraint, the nonstructural weight at the
tip must increase.

Effect of Constraints on Higher Freguencies

This section of the paper investigates
the effect of higher fregquency constraints on
the optimum blade weight and the optimum
design variable distributions. Therefore, the
results of the current work which involves
constraints on five frequencies and rotary
inertia (case b, Table 4) are compared with
the results obtained by the authors in Ref. 13
with constraints on two frequencies and the
rotary inertia (case ¢, Table 4). The results
of this study are summarized in the last two
columns of Tables 5 and 6 for rectangular

blade (30 and 40 design variables,
respectively) and Table 7 for tapered blade
(42 design variables). Table § indicates that

for the rectangular blade with 30 design
variables, the optimum blade weight increases
from 89.92 lbs in the two frequency case <to
95.28 lbs in the five frequency case.
However, the optimum blade with five frequency
constraints is still 3 percent lighter =<han
the reference blade. Tables 6 and 7 indiczate
similar trends for the rectangular blade with
40 design variables and the tapered blade with
42 design variables. There is also a3 cthange
in the value of the taper ratio kh from 1.1 to

1.5 as shown in Table 7 suggesting that the
blade taper increases with an increase in the
number of frequency constraints. The
optimization process raises the frequency fl

(first lead-lag) to its prescribed upper bound
and the autorotational inertia constraint is
active in all the cases.

Figures 7-9 depict the design variable
distributions (optimum versus reference) for
the five and two frequency constraint cases.
Fig. 7a depicts the horizontal box beam wall
thickness (t;) distributions along the blade

span with 30 design variables for the
rectangular blade. Fig. 7b depicts the same
distribution for the tapered blade with 42
design variables. There are significant
redistributions of the wall thicknesses
between the five and two frequency constraint
cases. For example, for the rectangular blade
(Fig. 7a), in the five frequency constraint
case (case b) the wall thickness (t;) is

smaller in magnitude at the blade root than
the reference blade value but larger than the
two frequency constraint case (case cl.
However, at the blade tip the value of t; in

the five frequency constraint case is
significantly smaller <than its value in the
two frequency constraint case, althcugh both
these values are larger than the reference
blade value. The situation iffers at the
blade root in the tapered blade case (Fig. 7b)
where the value of Ty in the five frequency

constraint case is smaller than the value for
the two frequency constraint case. Figs. 8a
and 8b present the box beam vertical wall
thickness (t,) distributions along the blade

span for rectangular and tapered blades,
respectively. The fiqures show that the value
of t, in the five frequency constraint case is

larger at the blade root than it is in the two
frequency constraint case whereas the
tendencies are reversed at the blade tip for
both the rectangular and tapered blades.




Figs. 9a and 9b depict the nonstructural
segment weight distributions along the blade
span for the rectangular and the tapered
blades, respectively. There is a significant
reduction and <c¢hange in the nonstructural
weight distribution between the reference
blade and the optimum blade in the two
frequency constraint case than it is in the
five frequency constraint case. In other
words, the nonstructural weight distributions
for the five frequency constraint case 1is
closer to that of the reference blade. This
is because the reference blade was designed
with a larger number of design requirements on
frequencies. There are significant
differences in the optimum design variable
distribution along the blade span between the
two and five frequency constraint cases. This
can be explained as follows. The mass and/or
stiffness distribution tends to follow the
pattern of the coupled mode shapes in the
frequency constrained optimization. In the
two frequency constraint cases, therefore, the
mass distributions followed the mode shapes of
the coupled first lead-lag dominated frequency
and the first flapping dominated frequency.
In the five frequency constraint cases, the
mass distributions followed a different
pattern as higher coupled frequencies are
included.

Effect of Stress Constraints

The effect of adding centrifugal stress
constraints to the optimum design with
frequency and autorotational inertia
constraints has also been investigated. The
optimum designs with and without constraints
on the stresses are compared in Tables 5-7.
Table 5 indicates that for the rectangular
blade with 30 design variables, the optimum
blade weight increases with the addition of
stress constraints. For example in Table 35,
the blade weight reduction decreases from a
value of 3.04 percent in case b to a value of
2.67 percent in case a. The differences in
weight become more pronounced with an increase
in the number of design variables (Tables 6
and 7). For the tapered blade there is very
little <change in the taper ratio. In all the
cases studied, the optimization process still
moves the first lead-lag frequency fl to its

upper bound and the autorotational inertia
constraint remains critical.

Some typical results showing the effect
of stress constraints on optimum versus
reference blade design variable distributions
study are presented in Figs. 10-11. Figs. 10a
and 10b depict the box beam horizontal wall
thickness (tl) distributions along the blade

span with and without the stress constraints
for both rectangular and tapered blades,
respectively. The presence of stress
constraints increases the wall thicknesses at
the blade tip and reduces them inboard for the
rectangular blade with 30 design variables
(Fig. 10a). However, the tendencies are
reversed in the tapered blade (Fig. 10b).
Figs. 1lla and 1lb show the nonstructural
weight distributions along the blade span for
the rectangular and tapered blades,
respectively. For the rectangular blade (Fig.
1la) the optimization process reduces the
nonstructural weights at each segment (case b)
and the inclusion of stress constraints (case
a) only increases them a little. However for
the tapered blade (Fig. 11lb), the stress
constraints increase the nonstructural segment

weight at each segment making them higher than
the reference blade values towards blade
outboard.

Concluding Remarks

In this paper a procedure has been
described for the minimum weight design of
helicopter rotor blades with constraints on
multiple coupled flap-lag natural frequencies,
autorotational inertia and centrifugal stress.
The design variables used are the box beam
cross sectional dimensions, the magnitudes of
the nonstructural segment weights and the
blade taper ratio. The program CAMRAD has
been used to calculate the mode shapes and
frequencies of the blade and the program
CONMIN has been used for the optimizatiocn. In
addition, a linear approximation technique
involving Taylor series expansion has been
used to reduce analysis time. A  sensitivity
analysis consisting of analytical derivatives
of che objective function, the autorotational
inertia constraint and the stress constraints

~and a central finite difference scheme for the

derivatives of the frequency constraints nas
been performed. Optimum designs have =ceen
obtained for blades with both rectangular and
tapered planforms and compared with an
existing (reference) blade. Studies have also
been performed to assess the effects of higher
frequency constraints and stress constraints
on the optimum blade designs.

The following conclusions have been
drawn from the present study. The
optimization program CONMIN along with the
linear approximations based on Taylor series
expansions has been very efficient and optimum
results have been obtained in typically eight
to ten cycles. The results of the study
indicate that there is an increase in the
blade weight and a significant change in the
design variable distributions with an increase
in the number of frequency constraints., The
optimization process tends to redistribute
mass toward the blade tip due to the presence
of the autorotational inertia constraint. The
inclusion of the stress constraints has
different effects on the wall thickness
distributions of the rectangular and the
tapered blades, but tends to 1increase the
magnitude of the nonstructural segment weight
distributions in both cases.
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Table 1. Reference blade data

(Fig. 2)

Seg- Length Box beam dimension (ft) Bending stiff- Tor- Nonstructural Pre-
ment (£t) ness x 10q sional segment weight twist
Num-~ (16 - ££2) stiff-  (lbs) (deg.)
ber ness w,
X 104
(1b-£t?)
L tl tz t3 EIx EIY GJ Total Min.
1 1.37 0.0116 .0080 0.0280 7.349 78.58 11.111 §.718 0.89 1.745
2 2.2 0.0100 .0100 0.0440 6.957 84.68 10.139 3.088 1.43% 2.817
3 2.2 0.0075 L0075 0.03?5 5.548 66.55 7.778 1.978 1.43% 35.394
4 2.2 0.0060 L0050 0.0050 4.128 35.40 5.833 1.435 1.435 8.725
5 2.2 0.0050 .0050 0.0045 3.537 31.20 5.000 2.352 1.435 6.805
6 2.2 0.0050 L0050 0.003S 3.514 29.89 4.861 5.852 1.435 5.235
7 2. 0.0050 .0050 0.0040 3.526 30.55 4.931 6.342 1.435 3.43
8 2.2 0.0050 .0050 0.0046 3.539 31.31 5.000 6.573 1.435 02.90
9 2.2 0.0050 L0050 0.0035 3.514 29.89 4.861 6.372 1.435 -0.175
10 2.2 0.0050 .00s0 0.0021 3.481 27.91 2.778 5.962 1.435 -1.315
Table 2. Blade preassigned properties Table 3. 7e§e§enc? blade frequencies and bounds
Winaows

Number of blades
Blade radius
Chord

Flap hinge offse

Inplane hinge offset

Solidity (based
mean chord)

Precone angle
Croop angle

Tip sweep

Pitch axis drocp
Pitch axis sweep

Rotor speed

t

on

4
22 ft.
1.3 ft.

0.833 ft.

0.833 ft.

0.0748

0 degree
0 degree
0 degree
0 degree
0 degree

293 rpm

Reference Blade

Prescribed Bounds

Frequency
lower upper

Hz per rev Hz per rev Hz per rev
fl 12.285 2.52 12.162 2.49 12.408 2.54
52 16.098 3.30 15.936 3.26 16.258 3.33
53 20.9:13 4.28 20.704 4.24 21.122 4.33
f4 34.624 7.09 34.272 7.02 34.966 7.16
ES 35.361 7.34 35.592 7.27 36.21% 7.42
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Table S Optimization results for rectangular
blade; cases a-c, 30 design variables
(see Table 4)
Reference Cpt imum
blade blade
5 Freq 5 Freq 2 Freq
Al AI Al
[ed - -
case a case b case C
fl (Hz} 12.285 12.408 12,408 12.498
52 (Hz) 15.098 16.056 16.244 15.94¢%
53 (4z) 20.913 20.968 21.027 23.877
54 (d2) 34.624 34.346 34.594 33.353
55 (H2z) 35.361 35.502 35.502 34.231
Auto-
rotaticnal 517.3 517.3 517.3 517.2
inertia
(lb=£ft")
3lade weight 98.27 95.62 35.28 23.32
(1b)
percent reduc-
tion in blade - 2.67 3.04 3.50

, «
weight

CE i 20 o
Table 4. Summary of cases studied
Con- No. of Planform Design
straint Design variables
Case Variables (i=1,2,...,10)
a 30 Rectangular t, ,tz ,t3
“i i i
b 30 Rectangular tl.’tz.’t3.
i i i
c 30 Rectangular Ty vty sty
i i i
a 40 Rectangular tl"tz ’t3i’wo
b 40 Rectangular = ATIRAE ,wOi
[+ 40 Rectangular = ’t2.'“3.'w3
i i i
a 42 Tapered Rorhyrty ity
T, oW
3i oy
b 42 Tapered 1:'kh’tl 1ty s
i i
t, W
3i oy
c 42 Tapered hoohity vty
i i
t3.’”0.
1 1
Case Constraint definition Abbreviation used

a Windows on first three
lead-lag and first two
flapping frequencies,
autorotaional inertia
and stress constraints

b Windows on first three
lead-lag and first two
flapping frequencies and
autorotational inertia
constraint

c Windows on first lead-lag
and first flapping freq.

and autorotational inertia
constraint ’

(Ref. 19)

5 freq,AI, S

S5 freq,AIl

2 freq,Al

* - From reference blade

Table 6. Optimization results f£or rectangular
blade: cases a-c, 40 design variables
(see Table 4)
Reference Opt imum
blade blade
S Freq S Freq 2 Freq
AI AI Al
S - -
case a case b case ¢
fl (Hz) 12.285 12.408 12.408 12.408
f2 (Hz) 16.098 16.375 16.025 15.940
f3 (Hz) 20.913 21.081 21.060 22.600
£, (Hz) 34.524 34.823 34.689 37.250
fs (Hz) 35.361 35.82¢ 35.595 38.7L0
Auto-
rotational 517.3 517.3 517.3 517.3
inertia -
\ 2
(lb=£ft")
Blade weight 98.27 93.613 30.624 85.270
(1b)
Percent reduc-
tion in blade -~ 4.74 7.78 13.23
-
weight '

¢ - From reference blade



Table 7. Optimization results for tapered
blade; cases a-c, 42 design variables
(see Table 4)

Reference Optimum
blade blade
S Freq 5 Freq 2 Freq
Al Al Al
c - -
case a case b case c
kh 1.0 1.490 1.508 1.111
fl (Hz) 12.285 12.408 12.408 12.408
£, (Hz) 16.098 16.066 16.064 15.9338
f3 (Hz) 20.913 20.888 20.959 22.504
54 (Hz) 34.624 34.678 34.646 36.753
ES (Hz) 35.861 35.507 35.525 38.447
Auto-
rotational 517.3 517.3 517.3 517.3
inertia
(1b-£t2)
Blade weight 98.27 92.16 89.24 84.24
(lb)
Percent reduc-
tion in blade - 6.21 9.19 14.28

R *
weight

¢ - From reference blade

Initiaiize design vanables

i {Cycle = cycle +

Compule box beam section properties, Updated
design vanabies

i

{Calculate blade mode shapes
| and frequencies (CAMRAD)

stress and biade autorotational inertia
Optimization (CONMIN}

and approximate anatysis |

[] i

| Calculate objective function . Caiculate denvatives
and constraints i of opjective funcuon
{ and constraints
[}

10

o
r ?
13 —~ i
ta— « N
Lumped mass ™ I
— L
Shear center T
27 fe——b——
§‘\‘ \\‘ \\\\\\\\\\\\\- ---------------
N N
& \
N _____L—===="
o2 o2 —

0

Fig. 2 Rotor blade cross section

/<bt\/ .

I
~

\

f

a) Tapered box beam

hiz)

—_——— 7

h(z) = h(1-2/R) + hy /R

b) Rotor blade taper

Fig. 3 Rotor blade
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012

010 Referance blade
5 frequency, Al, ¢
.008
Horizontal
wall thickness (1), .006 :--_'
ft
.004 re=
.002 -

o}
83 44 8.8 13.2
Blade radius, ft

176 22.0

a) Rectangular blade, 30 design variables

Reference blade
5 frequency. Al, ¢

Horizontal

t

b

!

¥

wall thickness (ty), . :
ft

.83 44 8.8 132 176 22.0

Blade radius. ft

b) Tapered blade, 42 design variables

Fig. 4 Optimum distribution of box beam
horizontal wall thickness (t.;) along
blade radius

012 ~
Reference biade
----- 5 frequency, Al, ¢
Vertical

wall thickness (1o),
ft

002
0 ! i H A L L i L
.83 44 8.8 13.2 176 22.0
Blade radius, ft

a) Rectangular blade, 30 design variables

012
10 Refarence blade
L s . 5 frequency. Al. &
.008
Vertical -—-
wall thickness (1), .006 = :--—,__,-u--a |
K .
004 -
002 +
0 n 1 i ! " i . : n
.83 44 [:X:] 132 17.6 220
Blade radius, ft

b) Tapered blade, 42 design variables

Referance blade
----- 5 frequency. Al. ¢

Nonstructural
segmer;!t) waeight,

Il
I
|
; j
83 44 88 13.2 TS 22.0
Blade radius. ft

a) Rectangular blade, 40 design wvariaples
96 ~
: Reference blade
8.0 E_ ----- S frequency. Al. ¢

Nonstructural
segment weight,
b

44 8.8 13.2 178 222
Blade radius. ft

») Tapered blade, 42 design wvariables

Fig. 4 Optimum distribution of nonstructural
segment welght along blade radiu
Retference blade
----- 5 frequency. Al
—-— 2 frequency. Al
I
i P
Haorizontal o= , N
wall thickness (t4), | -~
ft ‘ . —
o0a - | [ ik
: ' s = r
N ———.d
.002 }-— —-
9 —— : '
.83 44 8.8 132 1786 229

Blade radius. #t

a) Rectangular blade, 30 design wvariables

018 ~
Reference blade ™ 7
015 - —eee- 5trequency. Al |
——— 2‘requency. Al ! !
012 = . oo
Horizontal ‘ ! '
wall thickness (ty). .009 - =
ft Iy —- . . ;
006 ==---~- I T
t I == ) 1 I
003 L= e |
0 — !
.83 44 88 13.2 1786 22.0

Blade radius. ft

b} Tapered blade, 42 design variables

Fig. 7 Optimum distributions of box Dbeam
Fig. 5 Optimum distribution of box beam horizontal wall thickness () along
vertical wall thickness (t5) along blade radius: effect of higher
blade radius frequency constraints
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012 ,— Reference blade

----- 5 frequency, Al

010
—=-=— 2 frequency, Al

.008

Vertical T

wall thickness (tp), .006
ft

——— —-

[pmpmpymp—m—pr Ly

i L n i

0 - 1 L L :
.83 4.4 88 13.2 17.6 22.0

Blade radius, ft

. a) Rectangular blade, 30 design variables

Reference blade
""" S frequency. Al
—--— 2 frequency, Al
015 + y—=
|
.

018

012 - ——

Vertical i |
wall thickness (tp).
ft

83 44 8.8 13.2 176 22.0
Blade radius, t

b) Tapered blade, 42 design variables

Fig. 8 Optimum distributions of box beam
vertical wall thickness (t2) along

blade radius; effect of higher
frequency constraints

96 Reference blade
----- 5 frequency, Al
8.0 —-— 2 frequency, Al
6.4 +
Nonstructural
segmer?é weight, 4.8

n 1 L

L !
.83 44 8.8 13.2 17.6 22.0
Blade radius. ft

a) Rectangular blade, 40 design variables

96 Reference blade

----- 5 frequency, Al
80| | —-— 2 frequency. Al
6.4

Nonstructural
segment weight, 4.8
b

3.2

.83 44 88 13.2 176 22.0
Blade radius, ft

b) Tapered blade, 42 design variables

Fig. 9 Optimum distributions of nonstructural
segment weight along blade radius

ot2 Reference blade
----- 5t ency. Al. ¢
.010 requency
—=~-— 5 frequency, Al
.008
Horizontal
wall thickness (ty), .006 jpdelr}
ft ! )
004 T WL oy —
.002
0 | | ; I . .
83 4.4 8.8 13.2 178 220

Blade radius, ft

a) Rectangular blade, 30 design variables

Reference biade
----- 5 frequency. Al. o
—-— 5 fraquency. Al

Honzontal
wall thickness it4).

, | ; J
.83 44 8.8 13.2 176 2272
Blade radius. ft

b) Tapered blade, 42 design wvariables

Fig. 10 Optimum distributions of Dbox beam
horizontal wall thickness (t,) along

blade radius; effect of stress
constraints

Reterence blade
-----5frequency. Al o
— -— 5 frequency, Al

Nonstructural
segment weight,
[}

0 . !
83 44 88 132 176 22.0
Blade radius. ft

a) Rectangular blade, 40 design wvariables

96 - Reference blade
L 5 ‘requency. Al. ¢
80 - | o —-— 5 ‘requency. Al
6.4 ~ el Ry
Nonstructural ==! -
segment weight, 4.8 ~ =
b
32 - ‘
16 — L ‘
S . |
a3 44 88 13.2 17.6 220

Blade radius. ft
b) Tapered blade, 42 design variables
Fig. 11 Optimum distribution of nonstructural

segment weight along blade radius:
effect of stress constraints
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